Terminal Substitution and Cage Incorporation of an η -Cyclopentadienyl Ring into Borane Cage Structures; Crystal Structures of [Mo(η -C₅H₅)(η ⁵: η ¹-C₅H₄)B₄H₇] and [Mo(η -C₅H₅)(η ³: η ²-C₃H₃)C₂B₉H₉]

Peter D. Grebenik,^a Malcolm L. H. Green,^b Malcolm A. Kelland,^b John B. Leach,^a and Philip Mountford^b

Chemistry and Biochemistry Section, School of Biological and Molecular Sciences, Oxford Polytechnic, Gypsy Lane, Oxford OX3 0BP, U.K.

Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K.

The synthesis and crystal structure of the molybdaborane $[Mo(\eta-C_5H_5)(\eta^5:\eta^1-C_5H_4)B_4H_7]$ (1) and of the molybdacarbaborane $[Mo(\eta-C_5H_5)(\eta^3:\eta^2-C_3H_3)C_2B_9H_9]$ (2) formed *via* cyclopentadienyl ring activation are reported.

We are exploring the metal-mediated oligomerisation of boranes.¹ Previously we have reported the synthesis of $[Mo(\eta-C_5H_5)_2(H)B_2H_5]$ by the photolysis of $[Mo(\eta-C_5H_5)_2H_2]$ in the presence of $[BH_3\cdotTHF]$ (THF = tetrahydrofuran).² Here we report that prolonged photolysis and thermolysis of this reaction mixture gives a deep red solution from which the compounds $[Mo(\eta-C_5H_5)(\eta^5:\eta^1-C_5H_4)B_4H_7]$ (1) and $[Mo(\eta-C_5H_5)(\eta^3:\eta^2-C_3H_3)C_2B_9H_9]$ (2) can be isolated by column chromatography.[†] The reactions are shown in Scheme 1. Compounds (1) and (2) are mildly air-sensitive, solutions decomposing in air in a few hours; crystals of (2) appear to be air-stable.

Thermolysis of pure $[Mo(\eta-C_5H_5)_2(H)B_2H_5]$ also gives (1) together with $[Mo(\eta-C_5H_5)_2H_2]$ in a 1 : 1 ratio, as determined from ¹H n.m.r. integration; the presumed reaction is given in equation (1).

$$2 \operatorname{Mo}(C_5H_5)_2(H)B_2H_5 \to \operatorname{Mo}(C_5H_5)(C_5H_4)B_4H_7 + \operatorname{Mo}(C_5H_5)_2H_2 + 2 H_2 \quad (1)$$

Compound (1) has been characterised by single crystal X-ray crystallography.[‡] The molecular structure (Figure 1) may be viewed as an analogue of the neutral *arachno*-

† In a typical experiment, $[Mo(\eta-C_5H_5)_2H_2]$ (10 g) dissolved in $[BH_3 \cdot THF]$ (220 cm³ of a 1 M solution) was irradiated (medium pressure Hg lamp) for 6 h, then heated to 70 °C for 12 h, and this cycle was repeated six times. Column chromatography, followed by crystallisation from toluene or diethyl ether, gave (1) (2.4 g, 20%) and (2) (70 mg, 0.5%).

‡ Data were collected on an Enraf-Nonius CAD4 diffractometer ($3 < 2\theta < 50^\circ$). The structures were solved from Patterson and Fourier syntheses and refined by full matrix least squares procedures with anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms bonded to carbon atoms were included in calculated positions and refined riding on their attached atom. Hydrogen atoms bonded to boron atoms were located from difference syntheses and their co-ordinates and isotropic thermal parameters refined. Crystallographic calculations were carried out using the Oxford 'CRYSTALS' package.⁷

Crystal data for (1): $C_{10}H_{16}B_4Mo$, M = 275.4, orthorhombic, space group *Pna2*₁, a = 11.710(2), b = 10.956(2), c = 9.202(9) Å, U = 1180.7 Å³, Z = 4, $D_c = 1.55$ g cm⁻³, $\mu = 10.5$ cm⁻¹, F(000) = 552, R = 0.023 and $R_w = 0.026$ for 903 observed reflections $I > 3\sigma(I)$ and 165 refined least squares parameters, $\lambda(Mo-K_{\alpha}) = 0.71069$ Å, crystal size *ca*. $0.25 \times 0.15 \times 0.20$ mm.

For (2): $C_{10}H_{17}B_9Mo$, M = 330.5, monoclinic, space group $P2_1/c$, a = 7.012(3), b = 15.029(8), c = 13.460(5) Å, $\beta = 91.57(3)$, U = 1417.9 Å³, Z = 4, $D_c = 1.55$ g cm⁻³, $\mu = 8.8$ cm⁻¹, F(000) = 656, R = 0.024 and $R_w = 0.025$ for 2255 observed reflections $I > 3\sigma(I)$ and 219 refined least squares parameters, $\lambda(Mo-K_{\alpha}) = 0.71069$ Å, crystal size ca. $0.40 \times 0.30 \times 0.45$ mm.

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

(2)

Scheme 1. i, BH_3 ·THF (1.0 M) hv (medium pressure Hg) 8 h, 60% (ref. 2). ii, BH_3 ·THF, hv for 4 h, heat 80 °C, 12 h, 12%. iii, BH_3 ·THF, as for ii, 0.5%.

Figure 1. Crystal structure of compound (1). Selected bond distances (Å): $Mo(2)-(C_5H_5 \text{ centroid}) 1.927$, $Mo(2)-(C_5H_4 \text{ centroid}) 1.964$, Mo(2)-B(1) 2.374(9), Mo(2)-B(3) 2.399(10), Mo(2)-C(1) 2.294(7), C(1)-B(5) 1.556(11), B(1)-B(3) 1.688(14), B(1)-B(4) 1.683(12), B(1)-B(5) 1.800(14), B(3)-B(4) 1.772(13), B(4)-B(5) 1.794(13). Selected bond angles (°): $(C_5H_5 \text{ centroid})-Mo(2)-(C_5H_4 \text{ centroid}) 144.24$, Mo(2)-C(1)-B(5) 107.0(5), Mo(2)-B(3)-B(4) 109.6(5), B(3)-B(4)-B(5) 106.2(6).

pentaborane(11) in which basal subrogation of one of the $\{BH_2\}$ groups by a $\{Mo(\eta-C_5H_5)(\eta^5:\eta^1-C_5H_4)\}$ fragment has occurred.³ One of the C₅-ring hydrogen atoms has been replaced giving a boron–carbon σ -bond with the carbon atom substituting for the *endo* terminal H on the B(5) of the parent B₅H₁₁. Thus, the $\{C_5H_4\}$ fragment acts as an η^5 -ligand to Mo(2) and as an η^1 -ligand to B(5). From an electron counting view, the $\{Mo(\eta-C_5H_5)(\eta^5:\eta^1-C_5H_4)\}$ fragment contributes three orbitals and a total of five electrons to the cage. The possibility of considering (1) as a *nido*-pentagonal pyramidal structure is excluded by the observation that C(1) lies *ca*. 0.7 Å below the Mo(2), B(3), B(4), B(5) best plane.

Compound (1) has been characterised in solution by ¹H, ¹¹B, and ¹³C n.m.r. spectroscopy.§ The ¹¹B n.m.r. spectrum shows four inequivalent boron resonances which, unusually for an *arachno* structure, all occur as doublets due to terminal hydrogen couplings, and is consistent with the absence of a $\{BH_2\}$ fragment which often helps to characterise an *arachno* structure. Consistent with the proposed structure the ¹H n.m.r. spectrum shows three different bridging hydrogens. Selective heteronuclear ¹¹B $\{^{1}H\}$ decoupling experiments show that these occupy bridging positions between the basal atoms, Mo(2) and B(3), B(3) and B(4), and B(4) and B(5). An interesting feature is that spin–spin coupling is observed

Figure 2. Crystal structure of compound (2). Selected bond distances (Å): $Mo(1)-(C_5H_5 \text{ centroid}) 1.985$, Mo(1)-C(1) 2.225(2), Mo(1)-C(2) 2.155(2), Mo(1)-C(5) 2.310(2), Mo(1)-B(4) 2.344(2), Mo(1)-B(5) 2.428(2), C(1)-C(2) 1.450(3), C(1)-C(5) 1.413(3), C(2)-C(3) 1.682(2). Selected bond angle (°): $(C_5H_5 \text{ centroid})-Mo(1)-(C_5H_3 \text{ centroid}) 145.01$. Average deviation from calculated best planes (Å): C(2)C(3)B(4)B(5)B(6) 0.016(8), B(7)B(8)B(9)B(10)B(11) 0.0012(8), Mo(1)B(6)B(11)B(7)C(3) 0.15(5), C(1)C(2)C(3)C(4)C(5) 0.02(1), C(6)C(7)C(8)C(9)C(10) 0.0006(5).

between basal bridging protons and the apex terminal proton in addition to the expected ${}^{2}J$ couplings from adjacent basal terminal and bridging protons. In both the ${}^{1}H$ and ${}^{13}C$ n.m.r. spectra, one resonance is observed for the η -C₅H₅ ligand, and four separate resonances are observed for the C₅H₄ ligand. The quaternary C(1) has not been located in the ${}^{13}C$ n.m.r. spectrum.

Compound (2) has been characterised by single crystal X-ray crystallography.[‡] A striking feature of the molecular structure (Figure 2) is the presence of a MoC_2B_9 closoicosahedral cage. This is the first example of the partial incorporation of a C5 ring into a cage while retaining co-ordination to the metal atom. In a previous report of partial incorporation of a C₅ ring into a metallacarbaborane, in the compound $[Co_2(\eta-C_5H_5)_2(\mu-C_3H_4)C_2B_3H_5]$,⁴ the three exo carbons of the C₅ unit are not interacting with the metal atoms and form a $\{C_3H_4\}$ fragment, compared with $\{C_3H_3\}$ in compound (2). We note that boron-carbon bond formation via ortho-cycloboronation has been described in an iridaplatina-borane system.5 Of interest from the crystal structure of (2) is the C(2)-C(3) interatomic cage distance of 1.682(2) Å, which is consistent with that found in other equivalent MC₂B₉ cages⁶ and is considerably larger than normal bonded C-C distances. Compound (2) possesses a non-crystallographic plane of symmetry through atoms Mo(1), C(5), B(7), B(12), B(5), and C(6).

Compound (2) has also been characterised in solution by ¹H, ¹¹B, and ¹³C n.m.r. spectroscopy.§ The ¹¹B n.m.r. spectrum shows six inequivalent boron resonances in intensity ratios 1:1:2:2:2:1 and the selective ¹H{¹¹B} n.m.r. spectrum shows six terminal B–H proton resonances in intensity ratios 1:2:2:1:2:1, in addition to a single resonance intensity 5 for the η -C₅H₅ ring and a doublet and triplet, intensities 2:1, resulting from the coupled *exo*-cage C₃H₃ group co-ordinated to the molybdenum and cage carbon

[§] Selected spectroscopic data {solvent $[{}^{2}H_{g}]$ toluene for compound (1)}. ${}^{1}H$ n.m.r. at 200 MHz and ${}^{11}B$ n.m.r. at 64 MHz, chemical shifts (δ) in p.p.m. and coupling constants in Hz.

Compound (1): ${}^{11}H{}^{(11B)}$ n.m.r., 4.7 (t d, 1H, C₅H₄), 4.5 (sextet, 1H, C₅H₄), 4.3 [s, 1H(4)], 4.3 [s, 5H(Cp)], 3.6 [s, 1H(5)], 3.5 (quartet, 1H, C₅H₄), 3.1 [t, 1H(3)], 1.8 (quintet, 1H, C₅H₄), 0.2 [s, 1H(1)], -1.2 [quintet, 1H(u_{4,5})], -2.4 [sextet, 1H(u_{3,4})], -11.6 [triplet, 1H(u_{2,3})]; ${}^{11}B$ n.m.r. ($J^{11}B^{-1}H$), 9.7 [d, 1B(4), (142)], -0.3 [d, 1B(3), (129)], -8.5 [d, 1B(5), (125)], -50.9 [d, 1B(1), (151)]. ${}^{13}C{}^{11}H$ n.m.r., 74.96 (s, 1C), 79.21 (s, 1C), 82.58 (s, 1C), 86.16 [s, 5C/Cp)], 86.33 (s, 1C).

Compound (2): ${}^{1}H{{}^{1}B}$ n.m.r., 4.6 [s, 5H(Cp)], 4.3 [s, 1H(12)], 3.7 [d, 2H(21,24), $J_{H(21,24)-H(25)}$ 3.3 Hz], 3.2 [s, 2H(9,10)], 2.9 [t, 1H(25), $J_{H(21,24)-H(25)}$ 3.3 Hz], 2.63 [s, 2H(4,6)], 2.58 [s, 1H(5)], 2.57 [s, 2H(8,11)], 1.0 (s, 1H(7)]; ${}^{11}B$ n.m.r., 6.0 [d, 1B(12)], 4.4 [d, 1B(5)], 5.1 [d, 2B (4,6)], -8.1 [d, 2B(9,10)], -21.0 [d, 2B (8,11)], -28.4 [d, 1B(7)]; ${}^{13}C{}^{1}H{}$ n.m.r., 90.3 {5C[Cp], C(6)-C(10)}, 89.8 [1C(C5)], 61.8 [2C(Cl, 4)].

atoms. The ¹³C n.m.r. spectrum shows one resonance for the η -C₅H₅ ligand, and two separate resonances for the C(1,4) and C(5) of the C₅H₃ ligand. As in the case of compound (1), the quaternary C(1) and C(2) resonances have not been located.

In compound (2), the structure can be considered as a MoC_2B_9 icosahedron with the molybdenum(II) co-ordinated to an η -C₅H₅ ring and to an η ³-allylic C₃H₃ unit. The allylic unit is also η ²-co-ordinated to the icosahedral cage *via* the cage C atoms. The resulting cluster count of 26 electrons is consistent with that required for a *closo* icosahedron.

In conclusion, the compounds (1) and (2) contain surprising and unique C_5 -ring-borane ligands derived initially from [BH₃·THF] and presumably formed *via* metal-mediated processes.

We thank the S.E.R.C. and B.P. plc for a CASE award to P. M.; Oxford Polytechnic thank the D.T.I. for award of a grant towards the purchase of a Bruker AC200 multinuclear n.m.r. spectrometer.

Received, 2nd June 1989; Com. 9/02326G

References

- 1 P. D. Grebenik, J. B. Leach, M. L. H. Green, and N. M. Walker, *J. Organomet. Chem.*, 1988, **345**, C31.
- 2 P. D. Grebenik, M. L. H. Green, M. A. Kelland, J. B. Leach, P. Mountford, G. Stringer, N. M. Walker, and L-L. Wong, J. Chem. Soc., Chem. Commun., 1988, 799.
- 3 A related transition metal basal subrogated analogue of B_5H_{11} , [Nb(η -C₅H₅)₂B₄H₉], has been prepared in these laboratories, see P. D. Grebenik, M. L. H. Green, J. B. Leach, P. Mountford, and J. M. Pounds, *J. Organomet. Chem.*, submitted for publication, April 1989.
- 4 V. R. Miller, R. Weiss, and R. N. Grimes, J. Am. Chem. Soc., 1977, 99, 5646; J. R. Pipal and R. N. Grimes, *Inorg. Chem.*, 1978, 17, 10.
- 5 J. Bould, J. E. Cook, N. N. Greenwood, and J. D. Kennedy, J. Chem. Soc., Chem. Commun., 1983, 949.
- 6 E.g., M. S. Delaney, C. B. Knobler, and M. F. Hawthorne, *Inorg. Chem.*, 1981, 20, 1341.
- 7 D. J. Watkin, J. R. Carruthers, and P. W. Betteridge, 'CRYSTALS User Guide,' Chemical Crystallography Laboratory, University of Oxford, 1985.